

Characteristic Impedance

The Characteristic Impedance of a coaxial transmission line is a function of the ratio of the inner and outer conductor diameters and the dieletric constant of the insulating medium.

$$Zo = \frac{138}{\sqrt{\epsilon_r}} \log \frac{D}{O}$$

Where

Z_o = Characteristic impedance

D = Inside diameter of the outer conductor (inches)

O = Diameter of the inner conductor (inches)

ε Dieletric constant

Voltage Standing Wave Ratio (VSWR)

VSWR is the ratio of the maximum and adjacent minimum standung wave, expressed in terms of reflection coefficient.

$$VSWR = \frac{1+|\rho|}{1-|\rho|}$$

VSWR is a real number; a value 0 implies a perfectly matched load.

Insertion Loss

The composite Insertion Loss of a transmission line is determined by the losses associated with the inner and outer conductor, the dielectic medium and characteristic impedance mismatches.

1) Conductor Loss is a function of transmission line dimensions and materials.

$$CL = \frac{2.745 \times 10^{-4}}{Z_0 \times (D+O)} \times D \times O \times L \times (\varepsilon_r \times \mu_c \times f) \frac{1}{2} dB$$

Where

CL = Conductor Loss (dB)

Zo = Characteristic impedance (Ohms)

D = inside diameter of the outer conductor (inches)

O = diameter of the inner conductor (inches)

L = Conductor length (inches)

er = Dieletric constant

 $\mu c = Dieletric constant$

f = Frequency (Hz)

2) Dielectric Losses

$$CL = \frac{8.686\pi \tan \delta}{C} \times L \times fdB$$

Where

DL = Dielectric Loss (dB)

 $tan \delta = Loss tangent$

C = Velocity of propagation

. = Conductor length (inches)

f = Frequency (Hz)

3) Mismatch Loss is a function of reflected energy due to deviations from the characteristic impedandce of the transmission line system:

$$RL = 20log \frac{(VSWR - 1)}{(VSWR + 1)}$$